Research on remote sensed image Classification Based on morphological feature extraction

نویسندگان

  • Zhiyong Jiang
  • xiaoling Chen
چکیده

With the development of remote sensing technology, remote sensed data provide detailed information of structure and spectral about ground scenes. However, the traditional classification methods only take objects’ spectral information into consideration but neglect their structural information. There are two major reasons for this: First, the multi-spectral data contain a lot of information on the spectral properties of the land cover in the data, but no spatial information is inherent in the spectral data. Second, the individual images from a ground scene contain spatial information but very limited information on the spectral property of the data. So it is necessary to include both spectral and structure information in the process of multi-spectral data classification.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Overlap-based feature weighting: The feature extraction of Hyperspectral remote sensing imagery

Hyperspectral sensors provide a large number of spectral bands. This massive and complex data structure of hyperspectral images presents a challenge to traditional data processing techniques. Therefore, reducing the dimensionality of hyperspectral images without losing important information is a very important issue for the remote sensing community. We propose to use overlap-based feature weigh...

متن کامل

Hyperspectral Image Classification Based on the Fusion of the Features Generated by Sparse Representation Methods, Linear and Non-linear Transformations

The ability of recording the high resolution spectral signature of earth surface would be the most important feature of hyperspectral sensors. On the other hand, classification of hyperspectral imagery is known as one of the methods to extracting information from these remote sensing data sources. Despite the high potential of hyperspectral images in the information content point of view, there...

متن کامل

Multi-Channel Morphological Profiles for Classification of Hyperspectral Images Using Support Vector Machines

Hyperspectral imaging is a new remote sensing technique that generates hundreds of images, corresponding to different wavelength channels, for the same area on the surface of the Earth. Supervised classification of hyperspectral image data sets is a challenging problem due to the limited availability of training samples (which are very difficult and costly to obtain in practice) and the extreme...

متن کامل

Document Analysis And Classification Based On Passing Window

In this paper we present Document analysis and classification system to segment and classify contents of Arabic document images. This system includes preprocessing, document segmentation, feature extraction and document classification. A document image is enhanced in the preprocessing by removing noise, binarization, and detecting and correcting image skew. In document segmentation, an algorith...

متن کامل

Classification and feature extraction for remote sensing images from urban areas based on morphological transformations

Classification of panchromatic high-resolution data from urban areas using morphological and neural approaches is investigated. The proposed approach is based on three steps. First, the composition of geodesic opening and closing operations of different sizes is used in order to build a differential morphological profile that records image structural information. Although, the original panchrom...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007